(A+xB)/C = y
An algorithm to find x, when A, B, C and y are integers.
+1
–
Is there an already is such an algorithm out there, to generically and efficiently find a place where an integer summation series such as A+B+B+B+... becomes exactly divisible by some other integer C.
Nėra sub-kategorijų.
+[klausimas]
+[idėją]
+[projektas]
Manau, [tiksliai] iš Halfbakery turi prasmę:
"Nebent aš neteisingai suprantu problemos teiginį, tai atrodo kaip trivialus rečiausiai paplitusios daugybinės problemos variantas, kurį galima išspręsti keliais algoritmais [nuoroda]. (A xB)/C = y man atrodo lygiavertis y = LCM(A–C, B)."
Galbūt sprendimas yra paprastas, bet aš to dar nepatikrinau (TBD vėliau).
I think, [notexactly] from Halfbakery has a point:
"Unless I'm misunderstanding the problem statement, this seems like a trivial variant of the least common multiple problem, which can be solved by several algorithms [link]. (A+xB)/C = y seems to me to be equivalent to y = LCM(A - C, B)."
Perhaps the solution is simple, but I had not yet verified this (TBD later).