Positronic Material Emulation Screen
Shoot positrons to simulate the chemical properties of a surface through electric field patterning, and get electrons simulate materials without use of atoms.
Traditionally, what determines the chemical and physical properties of materials, is largely, how electron field gets arranged, when electrons encounter the force fields around nuclei. We traditionally rearrange that through introducing or taking away electrons to get new materials. However, nuclei are just sources of almost-point-like positive electric charges. If we could simulate those almost-point-like charges in other ways (like through directed positronic fields), it is not inconceivable, that one day we could create an equivalent of "computer screen" that simulates the surface properties of arbitrary materials including their chemical properties, without having any baryonic matter at all. This would likely be useful for generating arbitrary reactive surfaces to catalyze various chemical reactions.
Given that we already have positronic sources, and advanced electric field manipulation techniques, we could start playing with releasing them in streaks, in geometrically peculiar ways, such as to make them form not only electron-positron rings, or helical structures, but more -- seeking for more stable standing patterns, that remain sensitive to input conditions (incident electromagnetic wave). Such search for patterns eventually could result in discovery of positronic-electronic standing fields that do the trick.
Disclaimer: I'm not a physicist, but this, while highly speculative, seems like a logical possibility. It would be great to have an input from physicists with deeper knowledge into this domain.
看起来,可以控制电子来实现更逼真的虚拟实境?
//更逼真的虚拟现实?
并不是的。这与虚拟现实无关,而是与创建实际现实的无质量交互式对象有关。当然,不限于2D屏幕,它可以是3D,全息图状的物体,其表面在量子水平上像真实的一样相互作用。也就是说,如果您将激光照到模仿镜子的表面上,则它(与全息图不同)实际上会像镜子一样反射激光。
// more realistic virtual reality?
Not really. This is not about virtual reality -- it's about creating mass-less interactive objects of the actual reality. One is not limited to 2D screens of course, this could be a 3D, hologram-like objects with surfaces that, at quantum level interact like real. That is, if you shine a laser onto such surface that emulates a mirror, it would (unlike a hologram) actually reflect the laser like a mirror would.